Modeling spatial uncertainties in geospatial data fusion and mining

نویسندگان

  • Boris Kovalerchuk
  • Leonid Perlovsky
  • Michael Kovalerchuk
چکیده

Geospatial data analysis relies on Spatial Data Fusion and Mining (SDFM), which heavily depend on topology and geometry of spatial objects. Capturing and representing geometric characteristics such as orientation, shape, proximity, similarity, and their measurement are of the highest interest in SDFM. Representation of uncertain and dynamically changing topological structure of spatial objects including social and communication networks, roads and waterways under the influence of noise, obstacles, temporary loss of communication, and other factors. is another challenge. Spatial distribution of the dynamic network is a complex and dynamic mixture of its topology and geometry. Historically, separation of topology and geometry in mathematics was motivated by the need to separate the invariant part of the spatial distribution (topology) from the less invariant part (geometry). The geometric characteristics such as orientation, shape, and proximity are not invariant. This separation between geometry and topology was done under the assumption that the topological structure is certain and does not change over time. New challenges to deal with the dynamic and uncertain topological structure require a reexamination of this fundamental assumption. In the previous work we proposed a dynamic logic methodology for capturing, representing, and recording uncertain and dynamic topology and geometry jointly for spatial data fusion and mining. This work presents a further elaboration and formalization of this methodology as well as its application for modeling vector-to-vector and raster-to-vector conflation/registration problems and automated feature extraction from the imagery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Data Fusion: a Reliable Approach for Descriptive Modeling of Ore Deposits

Recognition of ore deposit genesis is still a controversial challenge for economic geologists. Here, this task was addressed by the virtue of Bayesian data fusion (BDF) implementing available proofs: semi-schematic examples with two (Cu and Pb + Zn) and three (Cu, Pb + Zn and Ag) evidences. The data, in current paper are just concentrations of indicated elements, were collected from Angouran’s ...

متن کامل

Comparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas

Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...

متن کامل

1 Liability for Spatial Data Quality

Liability in data, products, and services related to geographic information systems, spatial data infrastructure, location based services and web mapping services, is complicated by the complexities and uncertainties in liability for information system products and services generally, as well as by legal theory uncertainties surrounding liability for maps. Each application of geospatial technol...

متن کامل

Towards Uncertainty-based Geographic Information Science (part B) – Theories of Modeling Uncertainties in Spatial Analyses

Within the framework of uncertainty-based geographic information science, this paper addresses modeling uncertainties in integrating multiple sources of data, modeling uncertainty in overlay analysis, modeling uncertainty in line simplification, uncertainty-based spatial data mining, uncertainty-based spatial queries, theory and methods for controlling the quality of spatial data, modeling unce...

متن کامل

Developing a Model Based on Geospatial Information Systems (GIS) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for Providing the Spatial Distribution Map of Landslide Risk. Case Study: Alborz Province

Landslide is one of these natural hazards which causes a great amount of financial and human damage annually allover the world. Accordingly, identification of areas with landslide threat for implementation of preventive measures in order to confront against the instability of hillsides for reduction of potential threats and related risks is very important. In this research a new method for clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012